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Generalized dynamic modeling of local heat transfer in bubble columns

Wei Chena, Tatsuya Hasegawaa, Atsushi Tsutsumia,∗, Kentaro Otawarab, Yoshiki Shigakib
a Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-8656, Japan

b Kureha Chemical Industry, 16 Ochiai, Nishiki, Iwaki, Fukushima 974-8656, Japan

Abstract

Instantaneous local heat transfer rates were measured by using a hot-wire probe in three bubble columns of different diameters of 200,
400 and 800 mm. The time series of heat transfer rates were analyzed by means of rescaled range (R/S) and deterministic chaos analyses.
Due to the influence of highly chaotic bubble motions, the instantaneous local heat transfer exhibits low-dimensional chaotic features.
The dependences of Hurst exponents and Kolmogorov entropy on the column scale consistently suggest different nonlinear hydrodynamic
behaviors exist in bubble columns of different scales. Based on the measurement of instantaneous heat transfer rates, an artificial neural
network (ANN) was applied to correlate instantaneous local heat transfer with dynamic motions of bubble and liquid. The ANN was
optimized and trained by only using the experimental data measured at one location of 200 mm column. The trained ANN model shows
good performance for the generalized use to predict the dynamic heat transfer rate in three columns over whole experimental conditions
studied, indicating the ANN is capable of capturing the universal relation between instantaneous heat transfer and local bubble dynamics.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Bubble columns have found wide application in a vari-
ety of chemical, biochemical and energy-related processes.
One attractive feature of bubble column reactors is the high
heat transfer rate. The heat transfer rate in gas–liquid flow
of bubble columns is generally 100 times larger than in
single phase flow[1], which favors highly exothermic and
endothermic reactions. In literature, numerous studies have
been devoted to understanding the heat transfer property in
bubble columns. However, most of the previous work pri-
marily focused on the time- or space-averaged heat transfer
from the column wall to the bed or from the surface of
an immersed heating object to the flow in laboratory- or
pilot-scale columns with diameter up to 300 mm[1–7]. Lit-
tle information is available for instantaneous heat transfer
and its relation to the time-dependent local hydrodynamics,
despite the fact that local flow structures and instantaneous
contacting patterns, rather than the average hydrodynamic
behaviors, have a dominant influence on the heat transfer
performance in bubble columns. By measuring the instanta-
neous changes in heat transfer due to the passage of single
gas bubble in liquid and liquid–solid system, Kumar et al.
[8] observed that the bubble motion enhances heat trans-
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fer in liquid due to bubble-wake-induced turbulence. The
bubble motion in bubble columns is dictated by bubble
dynamics. The use of average heat transfer causes the loss
of information regarding the effect of instantaneous bubble
dynamics on heat transfer. This is one of the main reasons
that most of the available correlations of heat transfer in
bubble columns do not remain valid over the wide range of
scale-up. Hence, for a comprehensive understanding of the
heat transfer mechanism and more reliable modeling of the
heat transfer behavior to improve design and operation of
bubble column reactors, it is essential to study instantaneous
heat transfer in bubble columns under wide conditions.

In recent years, attempts have been made to quantify the
transient aspects and spatial inhomogeneities of complex
hydrodynamic behaviors of multiphase reactors. By exploit-
ing the deterministic chaos analysis technique, the nonlin-
ear hydrodynamics of multiphase reactors are represented
with a strange attractor reconstructed from the time series of
system variables measured by specific methods. It has been
recognized that bubble columns show comparable chaotic
characteristics as fluidized beds[9–18], resulting from the
chaotic motions of bubbles[17,18]and turbulent interaction
between bubbles and the surrounding liquid medium[15].
Due to the complex spatio-temporal pattern of the dynamic
flow structures, it is difficult to establish the mathematical
model based on first principle for correlating the local bub-
ble dynamics with the heat transfer characteristics.
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Faced with the difficulties in theoretical interpretation of
the relations between instantaneous heat transfer and the lo-
cal bubble dynamics, we turn to the approach based on ar-
tificial neural networks (ANNs) to model the dynamic heat
transfer in bubble columns. ANNs are data-drive empirical
modeling tools. Their adaptability, nonlinearity and arbitrary
function mapping ability make them quite suitable for com-
plex chemical engineering problems. Since 1980s, ANNs
have proven efficient in adaptive control, fault diagnosis,
expert system, process modeling, estimation of thermody-
namic properties[19,20], and more recently in prediction of
nonlinear hydrodynamics in multiphase reactors[21–23].

In the present work, instantaneous local heat transfer rates
in three bubble columns of different scales were measured
by using a hot-wire probe. The rescaled range analysis and
chaos analysis were applied to characterize the dynamic fea-
ture of the local heat transfer rate. An ANN-based model
was proposed to model the underlying relation between the
bubble dynamics and instantaneous heat transfer based on
the measured time series of heat transfer rates. As a initial
speculation, it is assumed that there exists some generalized
relation between the local bubble dynamics and the instan-
taneous changes in the heat transfer rate, although the non-
linear hydrodynamics in bubble columns is very complex
and may change significantly with operating conditions and
columns scale. Thus, one could expect that such a model
based on limited experimental data obtained in one system
is capable of predicting the dynamic heat transfer charac-
teristics in other systems of different scales far outside the
range of experiments, on which the model is established.

2. Experimental

Experiments were conducted in three columns of Plex-
iglass with the inner diameters, of 200, 400 and 800 mm.
Perforated plates with 0.5 mm holes (equilateral triangular
pitch of 16 mm, opening ratio about 0.09%) were employed
as the gas distributor for the three columns. Tap water and
air were used as the liquid and gas phases, respectively. The
height of the columns was 3 m and the static liquid level
was kept at 2.0 m during the experiments. The experiments
were conducted at zero liquid flow and the superficial gas
velocity was varied in the range 20–90 mm/s, covering the
homogeneous bubbling regime and churn turbulent regime.

The local heat transfer rate was measured by a hot-wire
probe, which was developed based on the principle of the
constant temperature hot-wire anemometry technique. A thin
tungsten wire with a diameter of 10�m and a length of
2.0 mm was used as a hot-wire filament. The wire was
stretched between two tips of stainless supports and welded
with a spot welder. A gap between the supports was ex-
actly fixed at 2.0 mm. The supports were connected to one
of the arms in the Wheatstone bridge circuit. Thus the fluc-
tuations of the local heat transfer rate can be converted into
the voltage output of the Wheatstone bridge. The hot-wire

probe was mounted in three axial positions (600, 900 and
1200 mm above the distributor) and three radial positions
(r/R = 0, 0.5 and 0.9) in the columns. The voltage signals
of the hot-wire probe were recorded with a data recorder
and digitized with an A/D converter at 1000 Hz. The typical
acquisition time was 50 s and thus the length of time series
was 50,000 points. With the heat transfer rate and temper-
ature difference between the hot-wire filament and the bulk
of the fluid in bubble columns known, the instantaneous lo-
cal heat transfer coefficient can be determined.

3. Data analysis

3.1. Rescaled range (R/S) analysis

The rescaled range (R/S) analysis characterizes correla-
tions in time series data with the Hurst exponentH. This
method has already been successfully used for bubble
columns with pressure fluctuation signals by Drahos et al.
[14] and with optical probe signals by Kikuchi et al.[17].
When a positive correlation in time series data exists, the
values of the Hurst exponent,H, are between 0.5 and 1.
Higher values ofH indicate that the studied data exhibit
stronger persistent trend. For uncorrelated data, i.e. stochas-
tic data,H is about 0.5. When the value ofH in the range
from 0 to 0.5, the data is negatively correlated. The Hurst
exponent can be determined as follows. First, from the time
seriesx(t), the cumulative departureB(t, u) to the average
is computed in the range fromt + 1 to t + τ:

B(t, u) =
t∑

u=1

x(u) − 〈x〉τ (1)

where 〈x〉τ is the average value ofx(t) over subperiodτ.
Then the sample sequential range,R(t, τ) is defined as:

R(t, τ) = max
0≤u≤τ

B(t, u) − min
0≤u≤τ

B(t, u) (2)

Finally, the rescaled rangeR(t, τ)/S(t, τ), whereS(t, τ) is
the standard deviation calculated for subperiodτ, is a power
function ofτ as follows:
R(t, τ)

S(t, τ)
∝ τH (3)

Therefore, the value ofH can be evaluated from the slope
of the logarithmic plot ofR(t, τ)/S(t, τ) as a function ofτ.

3.2. Chaos analysis

By means of chaos analysis, the time-dependent behavior
of local heat transfer rates in bubble columns can be quanti-
fied in terms of correlation dimension and Kolmogorov en-
tropy, which are measures for dynamical degrees of freedom
and for predictability of the system, respectively.

In the present study, the correlation dimensionD was es-
timated by fitting correlation integrals calculated according
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to Eq. (4) [24] to the correlation integral function defined
by Eq. (5) [25]:

C(r)= 2

(N+1−m)(N−m)

N−1∑
n=m

N−1−n∑
i=0

Θ(r − ‖
Xi − 
Xi+n‖)

(4)

C(r) =
(

r − rn

r0 − rn

)D

, rn ≤ r ≤ r0 (5)

In Eq. (5), rn and r0 are the maximum noise distance and
the maximum scaling distance, respectively, andΘ is the
Heaviside function. The maximum norm was used to calcu-
late the distance between two reconstructed vectors. Based
on the algorithm proposed by Schouten[24,25], the sam-
pling frequency of 1000 Hz was found to be adequate, which
gives the number of point per average cycle is in the range
40–80. Embedding dimension larger than 40 and time delay
equal to one sampling unit were applied reconstructing the
attractor in the state space. The algorithm defined byEq. (4)
computes distances between all pairs of points except for
those closer together in time thanm sampling units in order
to exclude dynamically correlated points from correlation
integral calculation. The number ofm was taken equal to
that of the embedding dimensiond used in the computation
of correlation integral.

The maximum-likelihood approach was used to estimate
the Kolmogorov entropy[26]. In this algorithm, the entropy
is determined from average number of steps required for a
pair of vectors, which are initially within a specific distance
lc, to separate until the distance between the vectors becomes
larger thanlc.

4. Results and discussion

4.1. Dynamic analysis of instantaneous heat transfer

The representative time series of the local instantaneous
heat transfer coefficient measured in bubble columns is
shown inFig. 1. It can be seen that the local heat transfer
rate fluctuates vigorously, which exhibits intense rises and
falls in the instantaneous changes of heat transfer coef-
ficients. Due to the higher thermal conductivity and heat
capacity, a relatively high heat transfer rate was obtained
when the probe tip was immersed in the liquid phase; while
the sudden dip in heat transfer coefficients was caused by
the bubble passage. On the basis of significant difference
in the heat transfer rate, the signal for gas and liquid phase
can be identified in the time series. From the measurement
of instantaneous heat transfer rates, the effects of bubble
and bubble wake on the heat transfer in bubble columns
are also clearly revealed. The instantaneous heat transfer
coefficient begins to increase as one bubble approaches the
hot-wire probe. This is due to the surface renewal caused
by the approaching bubble. The bubble forces the heated
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Fig. 1. Time series of instantaneous local heat transfer coefficients in
bubble columns,D = 400 mm,Ug = 45 mm/s,r/R = 0, h = 1.2 m above
the distributor.

liquid at the probe away from the probe and renews it with
the liquid from the bulk. The local maximum instantaneous
heat transfer coefficients are usually appeared in the bubble
wake region due to strong local turbulence caused by the
wake. This phenomenon agrees well with the observation
of Kumar et al.[8] for the single bubble injection in bubbly
liquid system. Moreover, it was found that much greater
increase in the instantaneous heat transfer rate with the
higher bubble passage frequency.

The Hurst exponents obtained from the time series of
instantaneous heat transfer coefficients measured in the three
bubble columns are plotted inFig. 2. As expected, for the
three columns the values ofH were found to be above 0.5,
indicating that the local heat transfer rate in bubble columns
displays persistent behaviors under the conditions examined.
Since the instantaneous changes in the heat transfer rate
mainly stem from the contact of the probe filament with the
gas–liquid flow, the persistent behavior in the time series

0.0 0.2 0.4 0.6 0.8 1.0
0.5

0.6

0.7

0.8

0.9

1.0

H
ur

st
 e

xp
on

en
t (

-)

r/R (-)

 200 mm column
 400 mm column
 800 mm column

Fig. 2. Radial distribution of Hurst exponents in bubble columns,
Ug = 78 mm/s,h = 1.2 m above the distributor.
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Fig. 3. Effect of gas velocity on Hurst exponents in bubble columns,
r/R = 0, h = 1.2 m above the distributor.

of heat transfer rates can be examined based on bubble and
liquid motions in bubble columns. For the 200 and 400 mm
columns, the strong persistence near the wall (r/R = 0.9)
denoted byH larger than 0.85 is attributed to the appearance
of vortical structures in the vicinity of the column wall. The
dynamic behavior in the central region of smaller columns
is seen to be less persistent than that in the wall. This may
be due to the intensive interactions between bubbles in the
column center. On the contrary, in the 80 cm column the
values ofH show much flatter distribution. This is likely due
to the existence of the column-scale circulation structure in
the larger column, which will be discussed below.

Fig. 3shows the effect of superficial gas velocity on Hurst
exponents. Under low gas velocity conditions in homoge-
neous bubbling regime, the gas–liquid flow exhibits strong
persistence. With the increase of gas velocity and accord-
ingly the much more complexity in the gas–liquid interac-
tion, the Hurst exponent decreases. This reveals that the ten-
dency of the random-like motion of bubbles become sig-
nificant at high gas velocities. Similar results were reported
by Kikuchi et al.[17] for the R/S analysis of optical probe
signals in bubble columns.

Fig. 4shows the effect of column scale on the correlation
dimension obtained from the time series of the local heat
transfer rate in bubble columns. It can be seen that the in-
stantaneous local heat transfer rate exhibits the deterministic
chaotic manner with relative low correlation dimensions. No
significant effect of column scale on the correlation dimen-
sion can be observed. Over the whole range of gas velocity,
the correlation dimension varies between 2 and 3. On the
contrary to the correlation dimension, the Kolmogorov en-
tropy was observed to be more sensitive to the column scale.
As can be seen inFig. 5, the Kolmogorov entropies in the
200 mm column are noticeably higher than those in the 400
and 800 mm columns. This suggests the fast loss of the infor-
mation and the difficulties in accurately predicting the tem-
poral and spatial behaviors in the small-scale system. When
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Fig. 4. Effect of column scale on the correlation dimension,r/R = 0.0,
1.2 m above the distributor.

the column diameter increases, the entropies monotonously
decrease. For the 800 mm column the entropies concentrate
in the range from 20 to 40 bits/s. It should be noted that
different dependencies of correlation dimensions and Kol-
mogorov entropies on the system parameter have also been
found in the CFB riser[13].

The radial distributions of the Kolmogorov entropies at
1.2 m above the distributor in the three columns are shown in
Fig. 6. The same pattern, as is found for the radial distribu-
tion of Hurst exponents, is also observed here. The entropies
near the wall are lower than those in the center region, es-
pecially in the smaller column. The entropy is found to be
reduced with column scale in the center region and exhibits
more flat radial profiles in the 800 mm column. This result
is consistent with the deterministic chaos analysis to the lo-
cal voidage fluctuations in bubble columns[27]. The effect
of column scale on the Kolmogorov entropy could be ex-
plained by different macroscopic flow structures observed in
the columns of different scales. In the columns of 200 and
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Fig. 5. Effect of column diameter on Kolmogorov entropies 1.2 m above
the distributor,r/R = 0.0.
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Fig. 6. Radial distribution of Kolmogorov entropies,Ug = 33 mm/s, 1.2 m
above the distributor.

400 mm diameter, the bubbles were homogeneously formed
at the distributor and rise up in a wavelike manner. The bub-
ble clustering or coalescence takes places with the increase
in gas velocity, forming many small vortices with scale less
than the column size. On the other hand, in the 800 mm
column, column-scale vortices and a gross circulation flow
structure were observed. Although the gross circulation in
the large-scale column does not show a regular behavior, it
seems to bring more coherent structures in the flow, which
could cause the reduction of the Kolmogorov entropy and a
more uniform nonlinear hydrodynamic flow structure.

The significant variations in nonlinear hydrodynamic be-
haviors with column scale, and the corresponding variations
in the dynamic feature of instantaneous local heat transfer
generally indicate the methodological pitfalls involved in
extrapolating correlations of average local heat transfer be-
yond their rang of applicability. Thus, in this work, we fol-
low a rather simple and understandable mechanism, that in a
given gas–liquid system the local bubble dynamics directly
determine the instantaneous local heat transfer rate, to es-
tablish a generalized model based on ANNs for prediction
of dynamic heat transfer in bubble columns.

4.2. ANN model of local dynamic heat transfer

The subject of ANNs is well covered in the literature
and will not be reviewed here. Generally, the architecture of
multi-layer ANNs can have many layers where a layer rep-
resents a set of parallel processing nodes. Theoretical work
has shown that a single hidden layer is sufficient for ANNs
to approximate any complex nonlinear function. Therefore,
in this work a fully interconnected feed forward neural net-
work containing only one hidden layer was used, as depicted
in Fig. 7. Since the heat transfer rate in gas phase is far lower
than in liquid phase and almost takes the same value, this
ANN model was designed to predict the average heat trans-
fer rate of liquid phase during a short intervalln between
two consecutive bubbles based on the present and past suc-

Fig. 7. Architecture of ANN model.

cessive passage times of liquid and bubble phases, as shown
in Fig. 8. The passage time of each phase reflects the local
bubble dynamics in bubble columns.

The input and output nodes of the ANN used are linear,
while the nodes in the hidden layers are nonlinear with sig-
moidal transfer function. The training process of the ANN
was carried out by using the error back-propagation algo-
rithm and was evaluated according to the mean squared er-
rors (MSEs) of the training data set. The way to establish
the training data set is an important issue, and the quality of
training data set is crucial to the success of neural network
modeling. In this work, it is assumed that there exists some
universal relation between the local bubble dynamics and
instantaneous heat transfer in bubble columns of different
scales. Hence, only the data in the time series measured in
one specified position of 200 mm column under the super-
ficial gas velocities of 23, 62 and 90 mm/s were selected to
construct the training data set and validation data set for the
model training. The remaining experimental data obtained
in the three columns over the whole range of gas velocity
were used as test data set to examine the prediction capabil-
ity of the proposed ANN model, especially in the scale-up
application. The experimental conditions for training data
set and test data set are listed inTables 1 and 2, respectively.

Table 1
Experimental conditions for the training data set for the ANN model

Column diameter (mm) 200
Measurement position

Axial height above distributor (mm) 900
Radial position,r/R 0.0

Gas velocity (mm/s) 23, 62 and 90

Table 2
Experimental conditions for the test data set for the ANN model

Column diameter (mm) 200, 400 and 800
Measurement position

Axial height above distributor (mm) 600, 900 and 1200
Radial position,r/R 0.0, 0.5 and 0.9

Gas velocity (mm/s) 23, 33, 45, 62, 78 and 90
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Fig. 8. Data preparation for the ANN model.

Since so far there is no rigorous theoretical method
for the determination of the architecture of ANNs, the
trial-and-error process was adopted for network design. To
identify an appropriate ANN model, the number of input
nodes was varied from 2 to 8, and hidden nodes from 5
to 50. The fit to the validation data set was evaluated by
MSE. As illustrated inFig. 9, with hidden nodes of 10,
using 6 and 8 input nodes provides comparably lower val-
idation error. In this case, the network with small number
of essential nodes is preferable. Thus, the number of in-
put and hidden nodes are chosen to be 6 and 10 for the
ANN used in this work. In this ANN model, the number of
input layer nodes is associated with the manner in which
the time-dependent bubble motions affect local heat trans-
fer. The optimum number of input nodes was found to be
6. This means that the present heat transfer rate of liquid
phase is significantly dependent on the motions of past three
bubbles.
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Fig. 9. Optimization of the number of nodes in the neural network.

4.3. Evaluation of the ANN model

After well trained, the prediction performance of the ANN
model was examined using the never-seen-before data of
test data set. A typical comparison of the predicted and mea-
sured heat transfer coefficients is shown inFig. 10. Note
that the predicted values for liquid phase are outputs of the
ANN model while for gas phase the average value of mea-
surement results is simply plotted as the predicted value.
From this figure, it can be seen that the predicted heat trans-
fer coefficients approach well to the measured ones. This
result suggests that the ANN model does not memorize but
accurately capture the underlying relationship between in-
stantaneous heat transfer and the local bubble dynamics.

The prediction error distributions of the ANN model
for the three columns are presented inFig. 11(a)–(c). Al-
though, as mentioned above, different macroscopic flow
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Fig. 10. The comparison of measured and predicted heat transfer co-
efficients using ANN model in 200 mm column,Ug = 45 mm/s, axial
position= 900 mm, radial position,r/R = 0.
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structure and nonlinear hydrodynamic behaviors exist in
bubble columns of different scale, over the whole range
of our experiments, it can be seen that the prediction er-
ror distributions for the three columns are similar, nearly
following the normal distribution. The column size and
the variation of locations do not produce any pronounced
changes in the prediction capability of the ANN model.
FromFig. 11, the average errors between the predicted and
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Fig. 11. The distributions of prediction error of ANN model.
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Fig. 12. Parity plot of predicted versus measured average heat transfer
coefficients.

measured heat transfer coefficients in the three columns are
all less than 3%. To get a much clearer illustration, the par-
ity plot of predicted versus measured average heat transfer
coefficients for the three columns is shown inFig. 12. The
predicted average local heat transfer coefficients at different
locations in the three columns are in good agreement with
the measured ones within 10% relative error.

These results confirm that there exists universality of the
relationship between the local bubble dynamics and the in-
stantaneous heat transfer rate. More importantly, it is shown
that only very limited data, as the training data used in this
work, could be good representative of the universal rela-
tion and form the necessary basis for modeling. A dynamic
model gaining an insight into such a relation holds high pos-
sibility for the generalized use in the scale-up and design of
bubble column reactors.

5. Conclusions

By using a hot-wire probe, the instantaneous local heat
transfer rates were measured at various axial and radial
positions in three bubble columns of different scales. The
rescaled range analysis and deterministic chaos analysis
were applied to characterize the dynamic features of instan-
taneous heat transfer. Because the heat transfer behavior is
predominantly determined by the local bubble dynamics,
the instantaneous heat transfer rate measured reflects the
nature of nonlinear hydrodynamics in bubble columns. The
analyses show local dynamic heat transfer in bubble col-
umn appears low-dimensional chaotic characteristics with
the correlation dimension in the range 2–3. Both the vari-
ations of Hurst exponents and Kolmogorov entropies with
column scale suggest that different nonlinear hydrodynamic
behaviors exist in bubble columns of different scales.

Based on the time series of instantaneous heat trans-
fer rates measured, an ANN-based model was proposed to
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correlate the local bubble dynamics and instantaneous heat
transfer. It was demonstrated that the ANN-based model
only trained with the dynamic data obtained from one spec-
ified location in 200 mm column is capable of predicting the
instantaneous local heat transfer rates of different locations
in bubble columns with diameter up to 800 mm. This reveals
that the trained ANN can generalize the fundamental rela-
tionship between local heat transfer and bubble dynamics in
bubble columns. Considering the difficulties in theoretical
interpretation of the relations between local instantaneous
heat transfer with the local bubble dynamics, the dynamic
heat transfer model based on ANN presents a valuable suc-
cess and can be a effective computational tool for the direct
correlation of chaotic gas–liquid behavior with the transport
phenomena in bubble columns.

Acknowledgements

The authors would like to thank the financial support of
a “Core Research for Evolutional Science and Technology”
grant from the Japan Science and Technology Corporation
(JST).

References

[1] W.D. Deckwer, On the mechanism of heat transfer in bubble column
reactors, Chem. Eng. Sci. 35 (1980) 1341–1346.

[2] C.G.J. Baker, E.R. Armstrong, M.A. Bergougnou, Heat transfer in
three-phase fluidized bed, Powder Technol. 21 (1978) 195–204.

[3] Y. Kato, K. Uchida, K. Kago, S. Morooka, Liquid holdup and
heat transfer coefficient between bed and wall in liquid–solid and
gas–liquid–solid fluidized beds, Powder Technol. 28 (2) (1981) 173–
179.

[4] K. Muroyama, M. Fukuma, A. Yasunishi, Wall-to-bed heat transfer
coefficient in liquid–solid and gas–liquid–solid fluidized beds, Can.
J. Chem. Eng. 64 (1986) 399.

[5] S.C. Saxena, Heat transfer from a cylindrical probe immersed in a
bubble column, Chem. Eng. J. 41 (1989) 25–39.

[6] S.C. Saxena, N.S. Rao, Heat transfer and gas holdup in a two-phase
bubble column: air–water system-review and new data, Exp. Therm.
Fluid Sci. 4 (1991) 139–151.

[7] L.-S. Fan, Gas–Liquid–Solid Fluidization Engineering, Butterworths,
Stoneham, MA, 1989, pp. 163–249.

[8] S. Kumar, K. Kusakabe, K. Raghunathan, L.S. Fan, Mechanism of
heat transfer in bubbly liquid and liquid–solid systems: single bubble
injection, AIChE J. 38 (5) (1992) 733–741.

[9] C.S. Daw, J.S. Halow, Evaluation and control of fluidization quality
through chaotic time series analysis of pressure drop measurements,
AIChE Symp. Ser. 89 (1993) 103–122.

[10] C.M. van den Bleek, J.C. Schouten, The fluidized bed as a
deterministic chaotic system, Chem. Eng. J. 53 (1993) 75–87.

[11] J.X. Bouillard, A.L. Miller, Experimental investigation of chaotic
hydrodynamic attractor in circulating fluidized bed, Powder Technol.
79 (1994) 211–215.

[12] C.L. Briens, J.M. Hay, C. Hudson, Correlation dimension for a
gas–liquid contactor, Chem. Eng. J. 64 (1996) 157–167.

[13] A. Marzocchella, R.C. Zijerveld, J.C. Schouten, C.M. van den Bleek,
Chaotic behavior of gas–solids flow in the riser of a laboratory-scale
circulating fluidized bed, AIChE J. 43 (6) (1997) 1458–1468.

[14] J. Drahos, F. Bradka, M. Puncochar, Fractal behaviour of pressure
fluctuations in a bubble column, Chem. Eng. Sci. 15–16 (1992)
4069–4075.

[15] K. Nguyen, C.S. Daw, P. Chakka, M. Cheng, D.D. Bruns, C.E.A.
Finney, M.B. Kennel, Spatio-temporal dynamics in a train of rising
bubbles, Chem. Eng. J. 64 (1996) 191–197.

[16] H.M. Letzel, J.C. Schouten, R. Krishna, C.M. van den Bleek,
Characterization of regimes and regime transitions in bubble columns
by chaos analysis of pressure signals, Chem. Eng. Sci. 52 (24) (1997)
4447–4459.

[17] R. Kikuchi, T. Yano, A. Tsutsumi, K. Yoshida, M. Punchochar, J.
Drahos, Diagnosis of chaotic dynamics of bubble motion in a bubble
column, Chem. Eng. Sci. 52 (1997) 3741–3745.

[18] W. Luewisuthichat, A. Tsutsumi, K. Yoshida, Bubble characteristics
in multi-phase flow systems: bubble sizes and distributions, J. Chem.
Eng. Jpn. 30 (1997) 461–466.

[19] A.J. Morris, G.A. Montague, M.J. Willis, Artificial neural networks:
studies in process modelling and control, Trans. IChemE, Part A 72
(1994) 3–19.

[20] D.R. Baughman, Y.A. Liu, Neural Networks in Bioprocessing and
Chemical Engineering, Academic Press, San Diego, CA, 1995.

[21] R. Bakker, R.J. De Korte, J.C. Schouten, C.M. van den Bleek,
Neural networks for prediction and control of chaotic fluidized bed
hydrodynamics: a first step, Fractals 5 (3) (1997) 523–530.

[22] K. Otawara, L.T. Fan, A. Tsutsumi, K. Yashida, An artificial neural
network as a model for chaotic behavior of a three-phase fluidized
bed, Chaos, Solitons Fractals 13 (2002) 353–362.

[23] H.Y. Lin, W. Chen, A. Tsutsumi, Long-term prediction of nonlinear
hydrodynamics in bubble columns by using artificial neural networks,
Chem. Eng. Proc. 42 (8–9) (2003) 611–620.

[24] J. Theiler, Estimation fractal dimension, J. Opt. Soc. Am. A 7 (1990)
1055–1073.

[25] J.C. Schouten, F. Takens, C.M. van den Bleek, Estimation of the
dimension of a noisy attractor, Phys. Rev. E 50 (1994) 1851–1861.

[26] J.C. Schouten, F. Taken, C.M. van den Bleek, Maximum-likelihood
estimation of the entropy of an attractor, Phys. Rev. E 49 (1994)
126–129.

[27] T. Yano, K. Kuramoto, A. Tsutsumi, K. Otawara, Y. Shigaki, Scale-up
effects in nonlinear dynamics of three-phase reactors, Chem. Eng.
Sci. 54 (21) (1999) 5259–5263.


	Generalized dynamic modeling of local heat transfer in bubble columns
	Introduction
	Experimental
	Data analysis
	Rescaled range (R/S) analysis
	Chaos analysis

	Results and discussion
	Dynamic analysis of instantaneous heat transfer
	ANN model of local dynamic heat transfer
	Evaluation of the ANN model

	Conclusions
	Acknowledgements
	References


